Avoiding brain hacking - Challenges of cybersecurity and privacy in Brain Computer Interfaces (2022)

Approximately 40 years ago, the first scientific prototypes that demonstrated applications of brain-computer interfaces were launched: this technology is capable of reading brain activity and decipher thoughts to carry out man-machine interaction tasks. Tasks that ranged from controlling devices such as a wheelchair up to medical interventions for cognitive rehabilitation. In the last 10 years, some of this scientific research has become available to society, by companies that have developed wearable, comfortable and accessible brain sensing devices that start to be part of our daily lives.

According to large consultancy agencies such as Stratserv Consultancy, the common consumer will massively buy and use brain-computer interfacing devices or machines between 2025 and 2030. Stratserv Consultancy also predicts that touchscreen technology will start to suffer a decrease in popularity with the commercialization of brain-computer interfaces, which will happen at the same time as the widespread adoption of technological solutions for holographic projections, visual devices, voiceless communication, and HMD systems. The possibilities offered by brain-computer interfaces are almost infinite: gaming, domotic control, health, and transportation, among others. This is why a large number of companies have detected this niche and are on board. From large companies such as Nissan with its brain-to-vehicle technology, Facebook with its “mental keyboard”, Microsoft with its new patents, and new startups with millionaire funding such as Neuralink by Elon Musk and Kernel by Bryan Johnson.

Brain-computer interfaces are promising technologies with a characteristic that make them unique: access to neural data from people, which is extremely sensitive information due to its health-related aspects as well as its association with the deep, private thoughts of oneself.

From a security point-of-view, brain-computer interfaces present two very important aspects: a) the nature of the information generated, which could be monetized through extortions and sold to companies; this information originates from the neuronal data of people, and therefore is very sensitive information due to its health-related aspects and because it is associated with intimate, private thoughts of a person; and b) direct communication with the body, which involves sending stimuli to the brain such as visual or auditory, or sending signals to the user’s devices. Both together open a new set of attack opportunities that are a threat to current technologies.

Balusian (IT and cybersecurity consultancy company) and Bitbrain(expert in neurotechnology and BCI) have explored these key cybersecurity aspects associated with this technology, aiming to answer these two questions:

  1. How can this new technology expose our brain activity to third parties, generating new privacy and safety problems?

  2. What solutions should be adopted by manufacturers and governments to protect citizens from these new cyber attack scenarios?

What is a non-invasive brain-computer interface (BCI)?

Avoiding brain hacking - Challenges of cybersecurity and privacy in Brain Computer Interfaces (1)

A brain-computer interface or BCI system (sometimes also called brain-machine interface, BMI) enables the real-time translation of brain activity into orders that can be utilized to control devices, with the electroencephalogram (EEG) being the most developed non-invasive measurement technology. Systems based on human EEGs have been utilized to control a computer mouse, write on the computer, send an email, search on the internet or even to control robotic arms and prostheses by SCI or stroke patients, among many other applications.

The peak of mobile technologies, communications, and cloud computing have led to a very fast evolution of BCI technologies, enabling the exploration of new applications that were unthinkable a few years back. For example, there are already commercially available gadget-like equipment oriented to the final consumer (B2C) such as Neurosky, Emotivand Muse, which are mainly focused on entertainment and wellbeing. There are also devices oriented to companies (B2B) that are very reliable, comfortable, and easy to use, such as those provided by Imec and Bitbrain. In both cases, the penetration of BCI applications into our society is a reality.

The next image shows the general architecture of an EEG-based BCI solution with a computer system view, which helps us identify the risk points of the technology:

Avoiding brain hacking - Challenges of cybersecurity and privacy in Brain Computer Interfaces (2)

Image: Standard architecture of a BCI solution

The key element is the EEG device (1), a technology that is placed on the user head and counts with non-invasive sensors that measure the electrical activity of the brain on the areas where they are placed on. The EEG sensor information is digitalized and sent to a Nearby control device (3) that frequently is a smartphone, tablet or computer application. The device collects, processes and stores brain activity. It can also interact with the user through different means, by sending visual or somatosensorial stimuli (4’) to the user, or sending commands to another device (4) such as a motor prosthesis. Some applications send some data (5) to a remote control device (6) that is usually a cloud server. These servers either carry out storage tasks in a database, massive computation of data, or extensive data computation that use data already stored in the server. Eventually, these servers can send information (7) to the close control device to adapt operation to a specific user.

There are 3 types of applications that follow this architecture, where all BCI are included:

  1. Monitoring: encompasses the complete range of applications related to collecting brain activity in a passive manner, to identify states associated with our cognitive, emotional or sensory-motor activity.

  2. Evaluation/ Diagnosis: processes brain activity to evaluate cognitive or emotional capabilities on the basis of neural patterns. Also, abnormal brain patterns can also be identified such as in the case of depression or epilepsy, among others.

  3. Interaction/Intervention: processes brain activity in real time to interact with devices such as a keyboard on the screen. When this interaction has a rehabilitation purpose, it is usually referred to as an intervention.

The applications of BCI solutions can be very diverse and include medical applications (for the diagnosis of neurological illnesses, treatment of phobias, cognitive rehabilitation in dementia, recovery of mobility with neuroprosthesis in people with mobility impairment), entertainment applications (video games that offer interfaces directly connected with our brain), neuromarketing services, wellness services (such as cognitive training). Other industries, such as the automotive, have also adopted this technology. Nissan and its Brain-To-Vehicle solution is the first real-time brain activity detection and analysis system that is related to driving.

What is cybersecurity?

Cyber security or information security is a field that comprehends different measures and activities with the objective of protecting technological structures and the information that is generated, processed, transmitted and stored in such infrastructures or computer networks. Protection focuses on the different dimensions of security, which are, at least, confidentiality, integrity, and availability. Confidentiality aims at protecting our valuable information (data on users, employees, servers, sale reports, patents) from unauthorized access, by means of encryption techniques and access control, or the use of firewalls. Integrity implies that data is not affected by mistakes or malicious modifications (modifications in payments and monetary transactions, changes in the content of emails, introduction of malicious codes within applications), through the use of signatures, control of versions, antivirus systems and antimalware. Finally, availability refers to the necessity of the information being accessible for authorized parties who require it, through redundancy systems and high availability, protection against external attacks and recovery systems in the case of failure.

Guaranteeing the information security or of the infrastructures implies in setting up different prevention and protection measures or controls, along with detection and incident response to avoid and be protected against safety incidents . There are different security frameworks that help identify the most adequate controls and measures (ISO 27001:2013, NIST Cybersecurity Framework, CIS Critical Security Controls). A common characteristic is that all focus on security risks, where risk is understood as the materialization of a system attack that can exploit the vulnerabilities (or weaknesses) offered by such systems, generating an impact.

Avoiding brain hacking - Challenges of cybersecurity and privacy in Brain Computer Interfaces (3)

Image: how cybersecurity approaches risks

This article has considered the risks associated with privacy and safety of brain-computer interfaces, which are related to two essential aspects:

(Video) BRAIN HACKERS? Cybersecurity for Neuralink and brain computer interfaces

  1. Nature of EEG data, which can be monetized through the sale to third parties or used to extort users.

  2. The fact that new communication channels have been created with the human body, where attacks against the user integrity could occur.

Cybersecurity risk scenarios related to the privacy of brain-computer interfaces

The information that can be generated by technology when monitoring or diagnosing each person is very sensitive and therefore presents a very high potential value.

In monitoring applications, EEG is utilized in a controlled manner to know that emotional or cognitive reactions of people, in marketing or publicity environments. Specific EEG markers, such as alpha asymmetry [Ref], or N100, P200, N200, and P300 [Ref] can provide knowledge on the emotions, preferences and tastes of a person regarding politics, sexual orientation, consumption, etc; or even access cognitive capabilities such as memory, learning, problem solving, among others. In diagnosis applications, from the EEG it is possible to detect abnormal brain behavior such as epilepsy, bleeding, sleep disorders, encephalitis, tumors, migraines, and substance abuse among others.

Ultimately, we are talking about accessing very private personal information such as true feelings and motivations, or even possible illnesses. In some cases, it could be an information that the user is not even aware of. This information could be processed to obtain, through detection algorithms, the probability of experiencing specific feelings or developing an illness. This private information, if adequately processed, can be monetized in a very profitable manner by third parties without knowledge of the users. Theapple watch with ECG is now in the spotlight: there are insurance companies willing to modify premiums depending on the outcome of accessing these data.

Data Brokers or data sellers, are entities that perform data breach to collect people's personal information, create solid consumer profiles and sell everything to third parties without knowledge (or consent) from users. Currently, consumer profiles can even contain customer data including the history of a consumer (credit card, tastes, necessities, needs), information can could help determine what type of sales can be directed to this consumer, identifying the risks of offering a specific product to the consumer, etc. For some third parties, it is an important competitive advantage to know the profiles of users and consumers beforehand. Some examples of this category are insurance companies that want to optimize the calculation of the premiums of clients, human resource companies interested in minimizing the risks associated with the selection of candidates, or even banks that commercialize products such as mortgages.

In recent years, between $38 and $240 have been paid for consumer profiles that include medical histories. How much would be paid for profiles that include the intimate preferences or potential illnesses of a person, on the basis of his brain activity?Due to the precision of the profiles generated, the inequality and asymmetry of information (and therefore of the power) between third party companies and their clients could be taken to unanticipated levels. With the advances of brain-sensing devices and EEG-related technologies, massive data processing, and aggregation of information with other technologies, the neurological knowledge derived from brain monitoring will be increasingly higher, yielding more precise functional cartography of the brain. Therefore it is expected that the value of data will continue to increase.

Still regarding privacy issues, real crude data generated by EEG devices are fundamental to optimize the automatic learning algorithms or machine learning (artificial intelligence) that support brain-computer interfaces. Manufacturers have millions of samples of EEG on their cloud servers, generated by thousands of users each time they wear the headband. These data can be utilized to propel internal research or for commercialization within a very lucrative market, where large technological groups and medical research are highly demanding.

Cybersecurity risk scenarios related to the safety of brain-computer interfaces

Organized crime has transferred an important part of its activity to the digital world. It is currently more lucrative than drug or gun traffic, and it is predicted that offenses against users will continue to increase due to: 1) exponential growth of connected devices, 2) inadequate security/protection of most of these devices, and 3) unawareness of basic safety measures by the users. The irruption of BCI products will be a new incentive for this “business”, which will see neuronal data as a new form of extortion and new interfaces with the user’s body as a new opportunity of causing physical or mental damage in a remote and anonymous manner.

The following image depicts the possible attack vectors on BCI technology:

Avoiding brain hacking - Challenges of cybersecurity and privacy in Brain Computer Interfaces (4)

Image: attack vectors to a standard BCI solution

These attacks can be characterized on the basis of the aforedescribed risk model:

Attacked element

Description of the attack

Vulnerability explored

Impact on the user

1. Headband’s firmware

The attacker accesses the headband momentaneously and introduces malicious content in its firmware through the micro-usb port, or through an informatic program such as an app. This malware can create and send manipulated EEG data.

* Easy access to firmware.

*Lack of encryption of the firmware

* Lack of implementation of validation (digital signature and hash) for the headband or app.

* Impact 1: Theft of data, aimed at extortion or sale to third parties.

* Impact 2: Manipulation of data sent to the close control device, which leads the application to not fulfil its objective, or even worse, leads to economic benefits to the attacker.

2. Communication between EEG and close control device

The attacker establishes communication with both parties, without them knowing that the link has been breached (Man in the Middle, MiTM). The attacker can intercept and alter all transmitted messages.

* BLE transmission is not encrypted and can be intercepted easily.

(Video) AI: Hacking without Humans How Can Human Brains Be Hacked?

* Original messages can be re-injected and manipulated.

* The App does not validate the connection device.

* Impact1

* Impact2

3. Close control device

The attacker identifies user credentials (through social engineering, phishing) and accesses the application with them.

* Lack of awareness of the user on the protection of his/her passwords

* Lack of control mechanisms within the app (double authentication factor)

* Impact1

The attacker creates a BCI app identical to the original, but with malicious additional code. The purpose is to make the original application not work, or send stimuli to the user to cause damage or steal information. The user downloads the app thinking it is original.

* No verification of the legitimacy of the app on the server and/or headband.

* Insufficient control of apps on Apple Store, Google Play, and similar servers.

* Impact 3: Manipulation of the actions of the app or application so that the final objective is different.

* Impact 4: Physical damage - stimuli/actions that could generate damage on the human body.

*Impact 5: Stimuli are sent to the user and the non-conscious brain response is analysed to obtain private information (tastes, preferences. , card pins) ,, recently called BrainSpyware.

4.Comunication between control devices

The attacker intercepts the data synchronization channel.

* Lack of encryption of communications, which allows an attacker to intercept communication and identify the EEG information of the user.

* Impact 1

* Impact 2

* Impact 6: Manipulation of data sent to the remote control device, and therefore the application does not fulfil its purpose of storing or processing data.

5.Remote control device

The attacker can access the equipment/servers of the provider (or providers of the user’s provider) and accesses EEG data of all users.

Inadequate protection of the login validation on the web service of the provider.

Impact 1. NOTE: the scope is much more global than in previous cases, as if successful, the attacker can access information of all users.

Scenario example 1: a real case of brain-computer interface BCI

The MoreGrasp H2020 EU project is an international research effort that is developing a through-controlled neuroprosthesis (mediated by BCI). The objective is that people that have suffered spinal cord injury can carry out routine movements with their hands, such as grabbing a glass of water or brush their teeth, enhancing their autonomy and quality of life. This technology is actually undergoing clinical trials, led by the Heidelberg University, Germany.

The practical operation of the technology is: the patient thinks, in a natural manner, about the action he wishes to accomplish, and the BCI installed within the wheelchair computer decodes user intent from brain signals. Instructions are provided to the functional electrical stimulation system and electrical currents are sent to the user’s forearm nerves, mobilizing the muscles that control the hand to achieve the necessary grasp. The user received sensory feedback on a smartwatch to compensate for the lack of sensibility. Once the action is accomplished, the computer sends brain data, and data regarding the use of the technology, to the central servers of the Moregrasp system, for storage and posterior statistical purposes.

Regarding the risk scenarios related to privacy, the main scenario is the secondary use of brain data from the user, which can not only identify his tetraplegic condition (due to degeneration of the motor cortex activity [Ref]), but also other information related to mental illnesses. Besides, brain activity is monitored during 8 continuous hours (use of the device), and therefore information associated with emotions and motivations throughout the tasks carried out during day-to-day life (interaction with other people, watching tv, etc.) could also be accessed.

(Video) Cyber Security Training for Beginners - Full Course

Regarding the security scenarios related to attacks, these can be summarized as follows, on the basis of the aforedescribed risk model:

Attacked element

Impact on the user

1.Attack to the headband’d firmware

* Impact 1: Theft of data, with the purpose of extortion or sale to third parties. In this case, it refers to EEG data or device-associated data.

* Impact 2: Manipulation of data sent to the close control device, and therefore the application does not fulfill its objective. If EEG data is manipulated there will be no causal relationship between what the person thinks and what the prosthesis executes. The person cannot learn how to use the prosthesis.

2.Attack to the communication EEG equipment-close control device

* Impact1

* Impact2

3a.Attack to the close control device (extraction of credentials )

* Impact1

3b.Attack to the close control device (substitution of app of application software)

* Impact 3: Manipulation of the actions carried out by the application to fulfill its purpose. This case is similar to Impact 2, where the prosthesis executes different orders than those requested by the user, leading to incorrect actions.

* Impact 4: Physical damage. Stimuli/actions are sent to generate damage to the human body. The application could send orders to the electrical stimulation system with very high electrical voltages to produce physical damage. Although this would be filtered by the FES medical system in the MoreGrasp case, it could lead to damage to other systems or critical infrastructures.

*Impacto 5:Brain Spyware: visual or auditory stimuli are sent to the user and the non-conscious brain response is analysed to obtain private information (tastes, preferences, PIN numbers). This could occur in the case of MoreGrasp only at the learning step, where visual neuro-feedback is produced to the user for learning purposes. This feedback could be altered with concrete visual stimuli to obtain brain reactions and evoked response (non controllable) to those stimuli, obtaining therefore information on the emotions and motivations to these specific stimuli.

4.Attack to the communication between control devices

* Impact 1

* Impact 2

* Impact 6: Manipulation of data sent to the remote control device, and therefore the application does fulfill its objective of data storage or processing. In this case, data that arrived at the Moregrasp servers would be altered, and for example the entire monitoring carried out by medical doctors (both regarding success or malfunctioning of the application) would not be correct.

5. Attack to the remote control device

* Impact1: Access to Moregrasp servers where data on all users is stored, as well as the processed information. These data could be used with extortion purposes (towards Moregrasp users) or sold to third parties.

Scenario example 2: mass consumption EEG equipment

EEG mental gadgets for mass consumption are already a reality and start to be available to the general public. Although the applications are still limited and its use is still not widespread, we can already see examples of the insecurity of some systems. This section presents a scenario where an attack has affected the Bluetooth Low Energy (BLE) communication between the EEG equipment and the close control device (a MiTM attach number 2). The objective of the attack is to, firstly, access private information on the user and for extortion purposes (Impact 1), and secondly, modify the information destined to the control device so that it sends hazardous signals to the user (Impact 2).

One machine configured with SW GATTacker (utilized for the control of IOT devices) with two dongle USB Bluetooth was utilized for the attack. The following image shows the purpose of the attack: route the bluetooth communication between the EEG headset and the App through the attacker machine.

Avoiding brain hacking - Challenges of cybersecurity and privacy in Brain Computer Interfaces (5)

Image: Attack scenario to route the traffic between the EEG headset and the App

The following figure shows the steps to carry out the attack:

  • Step 1: the attacker listens to the information generated by the EEG headset and responds by sending acceptance messages to establish a Bluetooth connection.
  • Step 2: the attacker machine uses the same information generated by the EEG headset and sends it to the App, until the App accepts the bluetooth connection.
  • Step 3: once the attacker machine has connected to the EEG headset and the App, it captures the traffic between both devices. The figure shows the identification of the sensors (in black), as well as the information sent by each sensor (in green).

Avoiding brain hacking - Challenges of cybersecurity and privacy in Brain Computer Interfaces (6)

This example demonstrates how the confidentiality of information can be easily compromised, leading to Impact 1 (EEG data theft with extortion purposes to the user). There is also the opportunity of compromising the integrity of the information and lead to Impact 2 (modification of the EEG information with the objective of generating signals to harm the user).

It must be highlighted that these types of attacks are extensible to many existing solutions that utilize the internet of things (IOTs), smartphone apps and cloud web services.

Solutions to the hacking of BCI applications

These risk scenarios present a series of characteristics that further extend current cybersecurity and privacy problems. On one hand, there could be a direct impact on human bodies and on the lives of the users, and on the other hand, neuronal data generated could be used and sold on different markets. With these data, data brokers could create much more precise user profiles for sale, and cybercriminal could use them for extortion purposes.

(Video) Brain-Computer Interfaces: Why tech companies want to get inside your brain

A holistic proposal is presented next, encompassing the measures that should be considered to avoid cybersecurity incidents, at a moment when neurotechnology solutions and brain-computer interfaces are still under expansion.

Implementation of technological security measures

It is fundamental to line up a set of basic controls that minimize the previously identified risks, which should include, at least:

  • Point 1: for the EEG equipment:

    • Encryption of firmware and verification of the authenticity through hash or signature.

  • Point 2: for the wireless communication between EEG equipment and close control system:

    • Encryption of the EEG information transmitted via BLE.

    • Validation of the device that wants to connect with the App, for example, through a PIN number or Near Field Communication (NFC).

  • Point 3: for the close control device (smartphone or laptop):

    • Double authentication (fingerprint, PIN, NFC) with the objective of ensuring that the device can only be connected with an EEG device through the BLE protocol. This would prevent malicious people from carrying out attacks similar to the MiTM showed previously.

    • Authenticity control of the Apps from the EEG equipment and/or server.

  • Point 4: for the communication with provider servers:

    • Encryption of the communication, with the objective of ensuring that in the case of interception of communication by a malicious person, there will be no access to EEG data.

  • Point 5: for the remote control devices (servers):

    • Protection of the entire infrastructure of the manufacturer, where EEG data of all users are stored: physical security, operative systems, networks, storage systems, applications, web applications (access forms), etc.

Transversally, other types of privacy solutions could be implemented to protect data such as Blockchain, which enables the monitoring and auditing of data.

The concept of security by design is very important to ensure that all these measures are contemplated since the conception of the product, with participation of neuroscience professionals that complement the vision of the engineers. The security guide of the Internet of Things (IOTs), defined by the Open Web Application Security Project (OWASP) can be a valid starting point. Implementation of these measures is acknowledged as a delicate decision, as it could clash with the functional and usability aspects, besides increasing the cost of solutions.

Effective and timely regulation by governments

Although there are regulations on the protection of data, such as the General Data Protection Regulation (GDPR), these present important limitations nowadays. For example, when acquiring EEG devices from companies with no branches in the European Union, GDPR is not applicable.

When utilizing this equipment, the user accepts to hand over his intimacy, on the terms described by the privacy policy, where it is indicated that data can be submitted to third parties and become propriety of the manufacturer without any restriction to their use (distribution, commerce, investigation), after “disidentification” (details on this process are not usually available).

Regulating these types of devices is fundamental if we wish to establish the enforceability of implementing minimal technological protections such as those indicated in the previous section, and avoid transfer situations and uncontrolled sale of neuronal information generated by users. To guarantee its effectiveness, this regulation should be internationally applicable to prevent the limitations of existing regulations, such as the GDPR (when the manufacturers are located outside the EU). Also, the regulation should be sufficiently agile to adapt to fast technological changes. In a recent study published in Nature journal, the researchers propose that neuronal information should be treated at a legislation level, at the same level of organ sales such as the 1984 US National Transplant Act. Also, these regulations should always guarantee that with these devices it is maintained the anonymity of the identity of the individual (mental and body integrity), and of the agency (capability of selecting its own actions), which could be altered according to the attacks suffered by the users. Regulation of the cybersecurity sector with the help of cybersecurity companies and institutions such as the Spanish National Cybersecurity Institute is a good start.

Education and awareness of the users

As the commercialization of BCI products (and wearables in general) progresses, it is crucial that users start to become aware of the risks they could be exposed to and of the necessity of adopting good security practices. Some examples to prevent security threats include disabling functions that are not utilized, only place EEG equipment when the service is going to be utilized, adequately manage the passwords for the Apps, and critically reading the privacy policies to be fully aware of the conditions. This type of activity could be the responsibility of independent organisms such as consumer associations, as already occurs with the European Consumer Organization (BEUC) or the spanish consumer organization (OCU).

Conclusions

BCI devices provide a fascinating multitude of benefits on multiple aspects of our lives, but they also convert our brains into a new information system that can be hacked, with impacts much deeper than what we experience with current technologies. Neuronal information can cease to be secret and feed an unregulated data sale business worth millions of euros, becoming a new channel to directly attack users due to the interfaces with the body. The answer to these problems includes the adoption of a holistic set of measures that involve all actors and considers the human dimensions of the impacts, not only the technological aspects.

The focus of cyber threats, cyber risks and thus cybersecurity can be generalized as including the entire spectrum of brain-computer interface technology solutions, such as invasive brain-computer interfaces (sensors are implemented directly into the brain), wearables and IOTs, which will interact with our bodies and lives in different manners and increasing proportions. Multiple improvements will be provided, but new security problems and security solutions will also arise.

Avoiding brain hacking - Challenges of cybersecurity and privacy in Brain Computer Interfaces (7)

Image: examples of invasive medical devices

Cybersecurity should be reinvented continuously to guarantee its effectiveness, encompassing biological, human and social fields that interact with technology, offering concepts that help understand and predict the emerging threats and new problems that might arise. It is important that the experts understand that the current dimensions of security must be broadened (confidentiality, availability, integrity) and adapt the metrics of vulnerability evaluation systems such as CVSS to cover human aspects (physical or mental damage, personal damage, information asymmetry, control). It would also be convenient that associations such as ISACA and ISC2 included in their ethical codes the protection of the end user, not only of the organization. This will lead to an adequate prediction of technical measures, regulations and awareness content regarding new attacks.

Authors

(Video) The Business of Cybersecurity

You might be interested in:

  • The CyberBrain Project - Cybersecurity in Brain-Computer Interfaces
  • Will machines ever feel emotions?
  • Advances in motor neuroprosthetics improve mobility in tetraplegics
  • Nutritional neuroscience reveals the gastronomic tastes of the Spaniards
  • The 4 top challenges and opportunities in market research industry
  • How to improve work performance in people over 40?
  • Overview of cognitive rehabilitation and stimulation therapies in dementia
  • 15 FAQs before selecting a neuromarketing master degree program or training course

FAQs

Can brain Computer Interface be hacked? ›

The problems with BCIs

Whereas a user of a PC may lose data or the use of their device, the costs of having an implanted BCI hacked are much greater. If a malicious actor were to gain access to a user's BCI, it could lead to paralyzation, severe brain damage or even potentially a loss of life.

What is interface in Cyber security? ›

The Security Interface framework is a set of Objective-C classes that provide user interface elements for programs that implement security features such as authorization, access to digital certificates, and access to items in keychains.

Can we hack human brain? ›

Like computers, human brains may be vulnerable to hackers. Technology is already allowing scientists to read people's thoughts and even plant new ones in the brain. The latest episode of the Science Channel's "Through the Wormhole," hosted by Morgan Freeman, explores the potential — and dangers — of hacking the mind.

What is the purpose of cybersecurity? ›

The main purpose of cyber security is to protect all organizational assets from both external and internal threats as well as disruptions caused due to natural disasters.

What is the benefit of BCI? ›

BCI can be used as an assistive, adaptive, and rehabilitative technology to monitor the brain activity and translate specific signal features that reflect the elderly's intent into commands that operate any device.

Is Brain Computer Interface artificial intelligence? ›

Description. Artificial Intelligence-Based Brain Computer Interface provides concepts of AI for the modeling of non-invasive modalities of medical signals such as EEG, MRI and FMRI. These modalities and their AI-based analysis are employed in BCI and related applications.

What are interface layers? ›

The interface layer is the solid layer between the top of the supports and the bottom of the part. This layer is extremely helpful when removing supports from the surface of the model since all the support structure is connected to the interface layer and will usually separate from the model in one pull (see Figure 5).

What does interface layer mean? ›

The network interface layer, commonly referred to as the data link layer, is the physical interface between the host system and the network hardware. It defines how data packets are to be formatted for transmission and routings. Some common link layer protocols include IEEE 802.2 and X.

What does interface mean in networking? ›

A network interface is the network-specific software that communicates with the network-specific device driver and the IP layer in order to provide the IP layer with a consistent interface to all network adapters that might be present.

How do you hack your brain? ›

The three key steps are to first, feed your brain, second rewire your brain and third, to challenge your brain.
...
10 Brain Hacks To Make You Smarter
  1. Feed your brain. ...
  2. Reboot your Circadian Clock. ...
  3. Practice Awareness. ...
  4. Do Yoga. ...
  5. Learn to Speed Read. ...
  6. Rewire your emotions. ...
  7. Use a Pen and Write it down. ...
  8. Listen to the Classics.

What does brain hack mean? ›

Brain hacking is the application of techniques and/or technologies to affect an individual's mental state, cognitive processes or level of function.

What is a hacked human? ›

"To hack a human being is to get to know that person better than they know themselves. And based on that, to increasingly manipulate you," Harari says. There's an upside to the rise of artificial intelligence, too, says Harari, but only if accompanied by regulation.

What should you do to protect your identity on internet? ›

Top 10 Ways to Protect Your Identity Online
  1. Use Strong Passwords. ...
  2. Look for Encryption. ...
  3. Install Security Suites. ...
  4. Turn on Web Browser Blacklisting. ...
  5. Avoid Phishing Scams. ...
  6. Get Private Data Protection. ...
  7. Password-Protect Your Wireless Router. ...
  8. Hide Your Personal Information.
25 Nov 2019

What is the impact of cyber security on society? ›

Cybersecurity is important because it protects all categories of data from theft and damage. This includes sensitive data, personally identifiable information (PII), protected health information (PHI), personal information, intellectual property, data, and governmental and industry information systems.

Who uses cyber security? ›

Cybersecurity is the protection of internet-connected systems such as hardware, software and data from cyberthreats. The practice is used by individuals and enterprises to protect against unauthorized access to data centers and other computerized systems.

What is an example of a brain computer interface? ›

The most common example of use of such technology is the direct control of a computer cursor by a person or animal using a BCI based on electrophysiological signals. A BCI allows a person to communicate with or control the external world without using conventional neuromuscular pathways.

What problems can BCI solve? ›

BCI indeed has a huge potential to improve lives. It helps patients regain the ability to perform tasks that they lost due to a debilitating illness, a brain injury, or even serious accidents.

What are the major challenges in brain computer interface? ›

Researchers have already faced some severe issues while exploring BCI paradigms, including training time and fatigue, signal processing, and novel decoders; shared control to supervisory control in closed-loop; etc.

How do you detect brain signals? ›

An EEG is a test that detects abnormalities in your brain waves, or in the electrical activity of your brain. During the procedure, electrodes consisting of small metal discs with thin wires are pasted onto your scalp. The electrodes detect tiny electrical charges that result from the activity of your brain cells.

What is a key component in brain-computer interface? ›

The major components of a BCI system are signal acquisition, signal processing and effector device (Schwartz et al., 2006).

How do you add supports in matter control? ›

Adding Supports

Supports can be added, then edited by clicking the supports button in the toolbar then the Generate within the drop down. Once supports have been added they can be deleted or moved at any time.

How do I add supports to Prusa 3d prints? ›

Starting with PrusaSlicer 2.3, you can also use Paint on supports. Right-click on a model and choose either a Support blocker or Support enforcer. Support blockers and enforcers can be manipulated with the familiar Move, Rotate, and Scale tools. You can also quickly duplicate them with copy&paste.

What is contact Z distance? ›

The contact Z distance is the amount of space between the lowest level of support and the underside of the model/layer being supported.

How many network interfaces are there on your computer? ›

There are two types NIC they are, Ethernet NIC. Wireless Network NIC.

What is interface data Unit? ›

Interface Data Unit (IDU) – IDU is used to have an agreed way of communication among two layers in a network layered architecture. It is passed from (N+1 to N). Service Access Point (SAP) – SAP is generally used as an identifier label for endpoints of network in OSI networking or model.

What is interface standards in data communication and networking? ›

In telecommunications, an interface standard is a standard that describes one or more functional characteristics (such as code conversion, line assignments, or protocol compliance) or physical characteristics (such as electrical, mechanical, or optical characteristics) necessary to allow the exchange of information ...

What is an example of an interface name? ›

Each network interface has a name. This usually consists of a few letters that relate to the type of interface, which may be followed by a number if there is more than one interface of that type. Examples might be lo (the loopback interface) and eth0 (the first Ethernet interface).

Where do I find network interface? ›

Contact your computer manufacturer. Look for an Ethernet port on the back of your computer (it will look like a phone jack but a little bigger). The presence of an Ethernet port indicates that a NIC is already installed in your computer.

How can I hack my brain with sound? ›

Neuroscientist Shares How to REALLY Hack Your Brain - YouTube

What part of the brain controls decision making? ›

Frontal lobe.

The largest lobe of the brain, located in the front of the head, the frontal lobe is involved in personality characteristics, decision-making and movement.

How can I study my brain faster? ›

7 Ways to Boost Brain Power While Studying
  1. Fit in some exercise a few times a week. ...
  2. Get creative. ...
  3. Stock up on your vitamins and micronutrients. ...
  4. Socialize. ...
  5. Allow yourself to power nap. ...
  6. Break out of your daily routine. ...
  7. Try something new.

How can I hack my behavior? ›

How To Hack Your Behavior - PICNUF Framework - YouTube

What is next humanity? ›

What's Next for Humanity: Automation, New Morality and a 'Global Useless Class' Israeli Historian and Author of “Sapiens” Yuval Noah Harari discusses how the accelerated pace of change of artificial intelligence and automation will impact the future of work, education, democracy, and even morality.

What is Yuval Noah Harari religion? ›

By then, Harari's nationalist fire had dimmed. In its place, he had attempted to will himself into religious conviction—and an observant Jewish life.

Who is Yuval Harari's husband? ›

Personal life. Harari is gay and in 2002 met his husband Itzik Yahav, whom he calls "my internet of all things". Yahav is also Harari's personal manager. They married in a civil ceremony in Toronto, Canada.

How do you protect your own and others privacy? ›

How To Protect Your Online Privacy
  1. Commit to sharing less online.
  2. Use strong, unique passwords and two-factor authentication.
  3. Tighten privacy settings for your online accounts.
  4. Purge unused mobile apps and browser extensions.
  5. Block search engines from tracking you.
  6. Browse online with a secure VPN.
22 Apr 2022

How do I keep personal information private online? ›

What Tools and Habits Can Help You Keep Your Information Private?
  1. Using an alias online. Instead of using your real name, you can always use a different name. ...
  2. Only connecting accounts you trust. Don't just open an account with any website. ...
  3. Use a VPN. ...
  4. Don't use social media. ...
  5. Avoid sharing things you want to keep private.
12 Nov 2020

How can I protect myself from online privacy? ›

Here are some ways you can boost your online privacy.
  1. Limit the personal information you share on social media. ...
  2. Browse in incognito or private mode. ...
  3. Use a different search engine. ...
  4. Use a virtual private network. ...
  5. Be careful where you click. ...
  6. Secure your mobile devices, too. ...
  7. Use quality antivirus software.
21 Mar 2021

Why is it important to overcome the security risk? ›

Avoid Security Breaches

It can help identify gaps in your defenses and ensure that controls are put in place before a breach. It helps provide a yearly analysis of your network to ensure it securely protected with lasts security guidelines and recommendations.

Why is cyber safety important for students? ›

We need these to keep our society running. At an individual level, cyber security attacks can lead to identity theft and extortion attempts, which can do serious damage to that individual's life. We all rely on the safety of our data and personal information.

Why cyber security is important for students? ›

Cybersecurity is crucial because it safeguards all types of data against theft and loss. Sensitive data, protected health information (PHI), personally identifiable information (PII), intellectual property, personal information, data, and government and business information systems are all included.

What can cyber attacks cause? ›

Cyberattacks are malicious attempts to access or damage a computer or network system. Cyberattacks can lead to the loss of money or the theft of personal, financial and medical information. These attacks can damage your reputation and safety.

What is the purpose of cybersecurity? ›

The main purpose of cyber security is to protect all organizational assets from both external and internal threats as well as disruptions caused due to natural disasters.

What is a cyber security job? ›

Cybersecurity analysts protect organizational infrastructure, such as computer networks and hardware devices, from cybercriminals and hackers seeking to cause damage or steal sensitive information.

What do you mean by interfacing? ›

Definition of interfacing

: fabric sewn or fused especially between the facing and the outside of a garment (as in a collar or cuff) for stiffening, reinforcing, and shape retention.

WHAT IS interface and types of interface? ›

Types of user interfaces

graphical user interface (GUI) command line interface (CLI) menu-driven user interface. touch user interface. voice user interface (VUI)

What is an interface in software? ›

Software interfaces (programming interfaces) are the languages, codes and messages that programs use to communicate with each other and to the hardware. Examples are the Windows, Mac and Linux operating systems, SMTP email, IP network protocols and the software drivers that activate the peripheral devices.

What is data interface? ›

A Data Interface in OEDQ is a template of a set of attributes representing a given entity, used to create processes that read from, or write to, interfaces rather than directly from or to sources or targets of data.

What are the types of interfaces? ›

There are four prevalent types of user interface and each has a range of advantages and disadvantages:
  • Command Line Interface.
  • Menu-driven Interface.
  • Graphical User Interface.
  • Touchscreen Graphical User Interface.
22 Sept 2014

Why is it called an interface? ›

Reason two: The word "interface" in the real world means the following (I got this definition from Google): a point where two systems, subjects, organizations, etc. meet and interact.

What is another word for interface? ›

What is another word for interface?
connectionlink
edgeconnection point
crossing pointcoupling
joiningintersection
seamweld
87 more rows

What is interface example? ›

An interface is a description of the actions that an object can do... for example when you flip a light switch, the light goes on, you don't care how, just that it does. In Object Oriented Programming, an Interface is a description of all functions that an object must have in order to be an "X".

How do you create a user interface? ›

How to Create a Graphical User Interface - YouTube

Why is interface used? ›

You use an interface to define a protocol of behavior that can be implemented by any class anywhere in the class hierarchy. Interfaces are useful for the following: Capturing similarities among unrelated classes without artificially forcing a class relationship.

What are two types of computer interfaces? ›

These are: Graphical User Interfaces (GUI) Command Line Interfaces (CLI)

What is system interface design? ›

User/system interface design is a complex disci- pline that draws from a number of fields. In simple terms, the basic goals are to design and build systems that are effective, are intuitive, and meet the goals of a set of users. By definition, a user, system, interface, and designer are involved.

What is an interface design pattern? ›

User interface (UI) design patterns are reusable/recurring components which designers use to solve common problems in user interface design. For example, the breadcrumbs design pattern lets users retrace their steps. Designers can apply them to a broad range of cases, but must adapt each to the specific context of use.

What is interface Unit? ›

A network interface unit (NIU) (sometimes called a network interface device) is a device that serves as a common interface for various other devices within a local area network (LAN), or as an interface to allow networked computers to connect to an outside network.

What is human data? ›

Human data integrates personal data from multiple sources, around the customer not the organisation. This way we are able to get a better understanding of what people say, do, think and feel all in context.

What is interface map? ›

A Map is an object that maps keys to values. A map cannot contain duplicate keys: Each key can map to at most one value. It models the mathematical function abstraction.

Videos

1. Criminal Justice & National Cyber Security
(SANS Institute)
2. Privacy Chat: Brain-Computer Interfaces: FPF IBM Report on Identifying and Managing Risks
(FutureofPrivacy)
3. Neuralink, mind control and the law
(AUSCL)
4. TSSG Research and Innovation Forum - CyberSecurity in Brain Computer Interfaces
(Walton Institute)
5. Cybersecurity for Beginners: Setting up a Virtual Lab
(Flatiron School)
6. University of St. Thomas Journal of Law and Public Policy Neuroscience and the Law Symposium
(University of St. Thomas | Minnesota)

Top Articles

Latest Posts

Article information

Author: Rubie Ullrich

Last Updated: 01/03/2023

Views: 6249

Rating: 4.1 / 5 (72 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Rubie Ullrich

Birthday: 1998-02-02

Address: 743 Stoltenberg Center, Genovevaville, NJ 59925-3119

Phone: +2202978377583

Job: Administration Engineer

Hobby: Surfing, Sailing, Listening to music, Web surfing, Kitesurfing, Geocaching, Backpacking

Introduction: My name is Rubie Ullrich, I am a enthusiastic, perfect, tender, vivacious, talented, famous, delightful person who loves writing and wants to share my knowledge and understanding with you.